Fischer, N. H., Olivier, E. J. \& Fischer, H. D. (1979). Progress in The Chemistry of Organic Natural Products. Vol. 38, pp. 47-390, edited by W. Herz, H. Grisebach \& G. W. Kırby. Berlin: Springer.
Grimain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Mazhar-ul-Haque \& Caughlan, C. N. (1969). J. Chem. Soc. B, pp. 956-960.
Taira, Z., Watson, W. H., Silva, M. \& Sammes, P. G. (1976). Cryst. Struct. Commun. 5, 601-604.

Von Dreele, R. B., Pettit, G. R., Cragg, G. M. \& Ode, R. H. (1975). J. Am. Chem. Soc. 97, 5256-5259.

(3-Chloro-2-hydroxy-5-nitrophenyl)(2'-chlorophenyl)iodonium Hydroxide, Inner Salt*

By Camden R. Hubbard, Vicky L. Himes \dagger and Alan D. Mighell
National Measurement Laboratory', National Bureau of Standards, Washington, DC 20234, USA
and Samuel W. Page
Bureau of Foods, Food and Drug Administration, Washington, DC 20204, USA

(Received 4 October 1979; accepted I July 1980)

Abstract

C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{INO}_{3}\). $M_{r}=-410 \cdot 00$. monoclinic, $P 2_{1} / n, a-15.928(9), b \quad--4.623(2), \quad c \quad-$ 18.271 (6) $\AA . \beta=105.58(2)^{\circ}, Z=4, D_{x}=2.101$, $D_{m}=2.11 \mathrm{Mg} \mathrm{m}{ }^{-3} ; R$ on $F^{2}=0.055$ (2302 unique reflections). The molecule exists as a 7 witterion with an intramolecular $\mathrm{I}^{+} \ldots \mathrm{O}$ distance of 2.755 (4) \AA. The I-C bond distances were found to be $2 \cdot 106$ (6) and $2 \cdot 105(5) \AA$, with a $\mathrm{C}-\mathrm{I}-\mathrm{C}$ angle of $98.4(2)^{\circ}$. Intermolecular ionic attraction between I^{+}and O^{-} causes the formation of infinite chains along the 1 'axis of the cell.

Introduction. The title compound is an intermediate in the preparation of o-iododiphenyl ethers. The preparation, NMR data and other chemical information for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{INO}_{3}$ have been reported by Page. Mazzola, Mighell. Himes \& Hubbard (1979). Transparent yellow needle-shaped crystals suitable for X-ray analysis were prepared by recrystallization from formic acid. Analysis: calculated for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{INO}_{3}: \mathrm{C} 35 \cdot 16$. H $1.48 . \mathrm{N} 3.42, \mathrm{Cl} 17.30$. I 30.95% : composition found: C $35 \cdot 63$, $\mathrm{H} 1 \cdot 48$. N $3 \cdot 65$. $\mathrm{Cl} 17 \cdot 59$. I $31 \cdot 30 \%$. The density was measured by the flotation method using a mixture of halogenated organic liquids. A crystal of dimensions $0.15 \times 0.04 \times 0.06 \mathrm{~mm}$ was

[^0]mounted on a four-circle diffractometer (graphitemonochromated Mo Ka radiation. $\lambda=0.71069 \AA$). Cell dimensions were determined by a least-squares refinement of 15 reflections with 2θ values ranging between 17 and 32°. The monoclinic symmetry was verified by reduction procedures (International Tables for X-ray Cry'stallography, 1969) and the space group $P 2_{1} / n$, which was initially assigned by analysis of precession photographs. was confirmed on the diffractometer by checking 310 systematically absent positions.

Diffraction intensities were measured in the bisecting mode with $4^{\circ} \leq 2 \theta \leq 50^{\circ}$. The peaks were scanned over a 2θ range of $\left(K \mathrm{r}_{1}-1.0^{\circ}\right)$ to $\left(K \mathrm{r}_{2}+1 \cdot 0^{\circ}\right)$ using variable scan rates of 1.0 to $29.3^{\circ} \mathrm{min}^{-1}$ depending on the intensity of the preliminary count. Background counts were taken at each end of the scan with a ratio of total background time to scan time of $1 \cdot 0$. Three standard reflections, which were measured periodically, showed a gradual loss of intensity of approximately 9% over the course of data collection. The intensity data were corrected for the drop in the standard reflections. The estimated standard deviation in intensity. $\sigma(I)$. was calculated from $\sigma^{2}(I)=\mathrm{TC}+(0.016 \mathrm{TC})^{2}$. where TC is the total observed counts and the constant was derived from a statistical analysis of the intensity distributions of the three standard reflections. Corrections were applied for Lorentz and polarization factors and for absorption ($\mu=2.860 \mathrm{~mm}^{-1}$). Of the 2696 reflections measured, there were 2302 unique reflections with 367 measured more than once. One reflection was either
mismeasured or had its intensity enhanced by simultaneous diffraction: this reflection did not contribute in the refinement. Equivalent observations were then averaged. The internal agreement factors between symmetry-related reflections were: average deviation $=$ $1 / \mathbf{h} \sum_{\mathbf{h}} \sum_{i}^{\mathcal{N}} \mid I(\mathbf{h})_{i}-\bar{I}(\mathbf{h})_{i} / / / \sigma(\mathbf{h})_{i}=0.8$ and $w R=$ $(A / B)^{1 / 2}=0.032$. where $A=\sum_{\mathrm{h}} \sum_{i=1}^{N} \mid I(\mathbf{h})_{i}-$ $\left.\left.\bar{I}(\mathbf{h})_{i}\right|^{2 / / \mid \sigma(h)}\right|^{2}, B=\sum_{h} \sum_{i=1}^{v}\left|I(\mathbf{h})_{i}\right|^{2} /\left|\sigma(\mathbf{h})_{i}\right|^{2}$, and $I(\mathbf{h})_{i}$ $=i$ th intensity of reflection $\mathbf{h}, \bar{I}(\mathbf{h})_{i}=$ mean value of the N equivalent reflections, and $\sigma(\mathbf{h})_{i}=i$ th σ of the reflection h.

The I and Cl atoms were located by using a three-dimensional Patterson map. The structure was then solved by conventional heavy-atom techniques. The model was refined by full-matrix anisotropic least-squares analysis. In the final cycles of refinement, the H atoms on the benzene rings were held fixed at their ideal calculated positions assuming trigonal geometry and a $\mathrm{C}-\mathrm{H}$ bond length of $1.0 \AA$. The function minimized was $\leq w\left(F_{\text {obs }}^{2}-F_{\text {calc }}^{2}\right)^{2}$, where $w=$ $|\mathrm{Lp} / \sigma(I)|^{2}$. The final R factors based on F^{2} are $R=$
 maximum shift divided by error were 0.002 and 0.01 , respectively. The scattering factors used were those of Cromer \& Mann (1968) for the heavy atoms and those of Stewart. Davidson \& Simpson (1965) for H. Corrections for anomalous dispersion were applied for Cl and I (International Tables for X-ray Crystallography, 1974). A difference Fourier map was calculated and no peak in the vicinity of $\mathrm{O}(1)$ was detected (see Fig. 1 for atom numbering). An analysis of the difference map showed ripples less than $1 \AA$ from both I

Fig. 1. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$. E.s.d.'s in bond distances are given in parentheses. E.s.d.'s in bond angles range from 0.2 to $0 \cdot 6^{\circ}$.

Table 1. Positional parameters and isotropic thermal parameters (\AA^{2}) with estimated standard deviations in parentheses

Equivalent isotropic temperature factors for the non-hydrogen atoms were calculated from $U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$.

	x	V	z	U
I	--0.14202 (2)	$0 \cdot 20796$ (8)	0.70536 (2)	0.0470 (2)
Ring 1 ($R 1$)				
C(1)	0.0235 (3)	0.0122 (12)	0.7027 (3)	$0 \cdot 044$ (3)
$\mathrm{C}(2)$	0.0194 (4)	0.0746 (13)	0.6472 (3)	0.051 (3)
C(3)	0.0998 (4)	-0.0496 (15)	0.6526 (4)	0.065 (4)
C(4)	$0 \cdot 1370$ (4)	0.2341 (15)	0.7135 (4)	0.077 (5)
C(5)	0.0951 (4)	-0.2937 (15)	0.7685 (3)	0.065 (4)
C(6)	0.0129 (4)	-0.1680(13)	0.7629 (3)	0.051 (3)
Cl(1)	0.02699 (10)	$0 \cdot 2939$ (4)	0.57171 (8)	0.0666 (10)
H(3)*	0.131	-0.008	0.613	0.080
H(4)	0.195	-0.324	0.717	0.080
H(5)	0.123	--0.424	0.812	0.080
H(6)	0.019	-0.210	0.802	0.080
Ring 2 (R2)				
C(1)	-0.2261 (3)	-0.0350 (12)	0.6185 (3)	0.039 (3)
C(2)	--0.3085 (3)	$0 \cdot 0008$ (12)	0.6323 (3)	0.043 (3)
C(3)	-0.3744 (3)	-0.1671 (13)	0.5808 (3)	0.044 (3)
$\mathrm{C}(4)$	0.3587 (3)	-0.3357 (12)	0.5241 (3)	0.044 (3)
C(5)	0.2751 (3)	-0.3417(12)	0.5144 (3)	0.043 (3)
C(6)	-0.2065 (3)	-0.1892 (13)	0.5621 (3)	0.045 (3)
$\mathrm{O}(1)$	0.3195 (2)	$0 \cdot 1634$ (8)	0.6842 (2)	0.052 (2)
$\mathrm{Cl}(2)$	-0.47843 (9)	-0.1563 (4)	0.59386 (8)	0.0621 (9)
N	-0.2600 (3)	0.5106 (12)	0.4527 (3)	0.056 (3)
$\mathrm{O}(2)$	$0 \cdot 1892$ (3)	-0.4901 (12)	0.4399 (2)	0.090 (4)
$\mathrm{O}(3)$	-0.3174 (3)	-0.6680 (11)	0.4170 (2)	0.078 (3)
H(4)	--0.407	-0.452	0.490	0.080
H(6)	0.146	-0.193	0.555	0.080

$$
\text { * The } \mathrm{C} \text { atom and the bonded } \mathrm{H} \text { atom are assigned the same number. }
$$

and $\mathrm{Cl}(2)$ and one peak $\left(\simeq 1 \mathrm{e} \AA^{-3}\right) 1 \AA$ from $R 1 \mathrm{C}(4)$ and $1.5 \AA$ from $R 1 \mathrm{C}(5)$. The presence of the peak and ripples in the difference map suggests that small errors exist in scattering factors and absorption corrections. No other map feature exceeded $0.4 \mathrm{e} \AA^{-3}$. Table 1 lists the final atomic parameters.* Calculations were performed with the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976).

Discussion. The bond distances and angles for the title compound are illustrated in Fig. 1. The two I-C distances of $2 \cdot 106$ (6) and $2 \cdot 105$ (5) \AA are comparable with those found in diphenyliodonium nitrate $\mid 2 \cdot 114$ (9) $\AA \mid$ (Wright \& Meyers, 1972) and diphenyliodonium chloride ($2.08 \AA$) (Khotsianova \& Struchkov, 1957). The C-I-C angle [98.4 (2) ${ }^{\circ}$] is appreciably greater than the theoretical value of 90°, primarily due to the effects of steric hindrance. Similar deviations from 90° have also been observed in diphenyliodonium fluoroborate (94°) (Struchkov \& Khotsianova, 1960), diphenyliodonium chloride and

[^1]$$
\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{INO}_{3}
$$

Table 2. Summary of the results of the least-squaresplanes analyses

Atoms used to define the planes are marked with asterisks. The estimated standard deviations for the distances to the planes are in the range $0.003-0.005 \AA$.

	Ring 1$(R 1)$			Ring 2$(R 2)$			
* C (1)	$0.003 \AA$	I	0.131 A	${ }^{*} \mathrm{C}(1)$	0.022 A	I	$0.126 \AA$
* C (2)	0.003	$\mathrm{Cl}(1)$	0.029	* $\mathrm{C}(2)$	$0 \cdot 016$	$\mathrm{Cl}(2)$	0.028
* ${ }^{*}(3)$	0.000			${ }^{*} \mathrm{C}(3)$	0.002	$\mathrm{O}(1)$	0.058
*C(4)	0.002			* $\mathrm{C}(4)$	0.014	N	0.047
* C (5)	0.002			${ }^{*} \mathrm{C}(5)$	0.011	O(2)	0.211
${ }^{*} \mathrm{C}(6)$	$0 \cdot 000$			${ }^{*} \mathrm{C}(6)$	-0.008	O(3)	$0 \cdot 104$

Table 3. Angles between the normals to the leastsquares planes of the two benzene rings, the nitro group and the iodine plane

Plane	$R 2$	Nitro group	lodine plane \ddagger
$R 1^{*}$	74.3°	79.7°	74.8°
$R 2$	-	8.48	21.2
Nitro group		-	28.4

* $R 1$: ring defined by $\mathrm{C}(1) \cdots \mathrm{C}(6)$; $R 2$: ring defined by $C(1) \cdots C(6)$.
+ Nitro group: $\mathrm{N}(1), \mathrm{O}(2), \mathrm{O}(3)$.
\ddagger Iodine plane: I, $R 1 \mathrm{C}(1), R 2 \mathrm{C}(1)$.
iodide (both 98°) (Khotsianova \& Struchkov, 1957), and in 4.5-dicyano-2-imidazolyl(phenyl)bromonium ylide $\left|99.3(3)^{\circ}\right|$ (Atwood \& Sheppard, 1975). The least-squares-planes results (Table 2) show that the two benzene rings are planar. The distances of the I atom from the planes of the benzene rings $[0.131$ (3) and $0.126(3) \AA \mid$ are similar to the out-of-plane distances $\mid 0.13$ (2) and $-0.09(2) \AA \mid$ found for diphenyliodonium fluoroborate (Struchkov \& Khotsianova, 1960). Table 3 provides a summary of the angles formed between the normals to the various planes.

X-ray analysis has shown that the molecule exists as a zwitterion. The presence of a negative charge on the O atom was deduced from the fact that a hydroxy H atom was not found, from the length of the $\mathrm{C}-\mathrm{O}$ bond, and from changes in the geometry of the benzene ring $(R 2)$. The $\mathrm{C}(2)-\mathrm{O}(1)$ bond distance $[1.259(7) \AA \mid$ is consistent with data on bond distances in nitrophenols and nitrophenolates in which the $0.1 \AA$ difference observed between the average $\mathrm{C}-\mathrm{O}$ bond lengths (1.355 and $1.248 \AA$, respectively) was attributed to the loss of a phenolic proton (Hough, 1976). In the nitrophenolate compounds. Hough observed that delocalization of the negative charge produced geometrical changes in the benzene ring. Similar geometrical changes are evident in ring 2 of the title compound $\mid \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)=111.8(5)^{\circ}$; and $\mathrm{C}(1)-\mathrm{C}(2)=$ $1.412(8), C(2)-C(3)=1.435(7) \AA \mid$.

The zwitterion configuration permits both intra- and intermolecular ionic attraction between I^{+}and O^{-}. The

Fig. 2. Stereoscopic view illustrating the intermolecular ionic attraction between iodine and oxygen (ORTEP: Johnson. 1965).
intramolecular ionic attraction causes a relatively large difference in the exocyclic angles associated with $\mathrm{C}(1)$ in ring 2, with $\mathrm{I}-\mathrm{C}(1)-\mathrm{C}(2)=103 \cdot 7$ (3) and $\mathrm{I}-\mathrm{C}(1)-$ $C(6)=128 \cdot 6(4)^{\circ}$. The intermolecular ionic attraction creates infinite chains along the y axis (Fig. 2). Each O atom is associated with two I atoms of different molecules; similarly, each I atom is associated with two O atoms. The short-long ionic attraction between I and an external anion (in this case, an O atom) has also been observed in diphenyliodonium chloride and nitrate (Wright \& Meyers, 1972).

The authors wish to thank Dr A. Perloff for his work on the precession photographs. The X-ray structure determination described in this paper was supported by the Food and Drug Administration, FDA-NBS Interagency Agreement 224-75-8253.

References

Atwood, J. L. \& Sheppard. W. A. (1975). Acta Cryst. B31, 2638-2642.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Hough, E. (1976). Acta Crist. B32, 1154-1162.
International Tables for X-ray Crystallography (1969). Vol. 1, 3rd ed., pp. 530-535. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 149-150. Birmingham: Kynoch Press.
Johnson. C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Khotsianova, T. L. \& Struchkov, Yu. T. (1957). Kristallografiva. 2, 384.
Page, S. W.. Mazzola, E. P., Mighell, A. D.. Himes. V. L. \& Hubbard. C. R. (1979). J. Am. Chem. Soc. 101. 5858-5860.
Stewart, J. M., Machin, P. A., Dickinson. C., Ammon. H. L.. Heck, H. \& Flack, H. (1976). The XRAY system version of March 1976. Tech. Rep. TR-446. Computer Science Center. Univ. of Maryland. College Park. Maryland.
Stewart. R. F.. Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42. 3175-3187.

Struchkov, Yu. T. \& Khotsianova, T. L. (1960). Ize. Akad. Nauk SSSR Otd. Khim. Nauk, No. 5, pp. 821-831.
Wright, W. B. \& Meyers, E. A. (1972). Cryst. Struct. Commun. I, 95-98.

[^0]: * IUPAC name: 6 chloro 2 (2 chlorophenviodonio) 4 nitro- 1 phenolate.
 \dagger Food and Drug Administration - NBS summer student; currently a student at the Catholic University of America. Washington. DC 20064, and a participant in the NBS Graduate Cooperative Education Program.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35455 (20 pp.). Copies may be obtained through The Executive Secretary. International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

